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A Unified Association Analysis Approach for Family
and Unrelated Samples Correcting for Stratification

Xiaofeng Zhu,1,* Shengchao Li,2 Richard S. Cooper,3 and Robert C. Elston1

There are two common designs for association mapping of complex diseases: case-control and family-based designs. A case-control

sample is more powerful to detect genetic effects than a family-based sample that contains the same numbers of affected and unaffected

persons, although additional markers may be required to control for spurious association. When family and unrelated samples are avail-

able, statistical analyses are often performed in the family and unrelated samples separately, conditioning on parental information for

the former, thus resulting in reduced power. In this report, we propose a unified approach that can incorporate both family and case-

control samples and, provided the additional markers are available, at the same time corrects for population stratification. We apply

the principal components of a marker matrix to adjust for the effect of population stratification. This unified approach makes it unnec-

essary to perform a conditional analysis of the family data and is more powerful than the separate analyses of unrelated and family

samples, or a meta-analysis performed by combining the results of the usual separate analyses. This property is demonstrated in both

a variety of simulation models and empirical data. The proposed approach can be equally applied to the analysis of both qualitative

and quantitative traits.
Introduction

Population-based association studies have been considered

more powerful than family-based linkage studies in the ge-

netic dissection of complex diseases.1,2 Such studies rely

on the linkage disequilibrium (LD) between a marker vari-

ant and a disease variant in a population. LD between the

alleles at two loci decays from generation to generation,

depending on the distance between the two loci. As a re-

sult, strong LD can be observed only within short distances

in populations. Because of the availability of dense SNPs

across the genome and the reduction in high-throughput

genotyping costs, association studies have become a favor-

ite way to identify the genetic variants affecting complex

traits.

The case-control design is well established in epidemiol-

ogy as a reliable approach for establishing the relationship

between a risk exposure and an outcome and has been

widely applied in studies of the association between a

genetic variant and phenotypic trait. When samples arise

from different ethnic groups or an admixed population,

cases and controls may have different ancestry distribu-

tions, resulting in real, but spurious, associations.3,4 This

problem can be exacerbated when the sample size is large,

a general requirement to obtain sufficient power to detect

modest genetic effects for most complex traits.5 To over-

come this problem, methods using a set of unlinked ge-

netic markers genotyped in the same samples have been

developed that control for population stratification in

case-control studies.6–12 In the presence of population

stratification, the chi-square (c2) statistic of a case-control

design may not follow a central chi-square distribution un-

der the null hypothesis of biological interest. The genomic
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control (GC) approach simply rescales the chi-square

statistic based on a set of unlinked markers,7 and this re-

scaled chi-square statistic is assumed to follow a chi-square

distribution. An alternative approach is ‘‘structured associ-

ation’’ (SA),9,13 which, based on a Markov Chain Monte

Carlo (MCMC) method, uses a set of independent genetic

markers to estimate the number of subpopulations and

the ancestry probabilities of individuals from putative ‘‘un-

structured’’ subpopulations.9 This information is then used

to test for association. Satten et al.10 extended SA by apply-

ing latent-class analysis to infer the population structure

while simultaneously estimating the model parameters

and testing for association. When the number of subpopu-

lations is large, the SA approach becomes computationally

intensive.

A third alternative approach is to summarize the genetic

background through the principal components or principal

coordinate analysis of marker genotype data.6,11,12,14,15

The approach based on principal components of genetic

marker data was first used for characterizing population

differences.16 The principal components calculated from a

matrix of genetic marker data can be further used to elimi-

nate the effect resulting from population stratification.12

Zhang et al.11 and Chen et al.6 further modeled the relation-

ship between the principal components and trait values

through smoothing techniques. Recently, Price et al.15

presented a regression method by regressing both the

phenotype and marker genotype values on the principal

components for unrelated data. Association between the

phenotype and marker is then tested with the residual corre-

lation. The principal component analysis is much simpler

than the MCMC-based approaches and computationally

faster. Its speed dependson the singular value decomposition
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of a matrix with dimensions given by the number of indi-

viduals and the number of markers in a study. When the

number of markers and the number of individuals are large,

as in whole-genome association studies, calculating the

principal components of such a matrix of genetic marker

data can be extremely time consuming, requiring a huge

amount of computer memory, although it can still be

handled reasonably fast by modern computers.15 Bauchet

et al.14 have suggested using principal coordinate analysis

to summarize the genetic marker data. In fact, this ap-

proach calculates the principal components on people

rather than on markers. When the number of markers

is much larger than the number of individuals in a study,

the principal coordinate analysis is more convenient

computationally because of the smaller matrix involved.17

The first L principal components corresponding to nonzero

latent roots and the first L principal coordinates are the

same, because of the duality of the two analyses.17 Thus,

the information used for both methods is equivalent.

More recently, a simple two-step procedure has been pro-

posed:18 first the odds of disease given the marker data is

modeled by applying generalized partial least-squares,

inferring the strata based on the odds of disease, then asso-

ciation is tested between disease and a test locus within

strata. This approach is valid for testing association in the

presence of population stratification and is computation-

ally simple.18

To overcome the problem caused by population stratifi-

cation, a further alternative approach is the transmis-

sion/disequilibrium test (TDT) design that utilizes family

members as controls.19 The TDT compares the frequencies

of genetic marker alleles that are transmitted from hetero-

zygous parents to affected children against those that are

not transmitted. In this design, the ethnic background of

cases and controls is necessarily matched, and so no addi-

tional markers are required to eliminate the effect of popu-

lation stratification. The TDT method has been extended

to include a variety of genetic models and study designs

for both qualitative traits20–24 and quantitative traits.25–30

However, compared with the case-control design, TDT-

based methods require the collection of DNA samples

from family members, which is more difficult than from

unrelated controls, especially in the case of late-onset dis-

eases.

The samples from case-control and family-based studies

cannot be pooled naively for analysis, because of the famil-

ial correlations in the latter. As techniques advance, many

whole-genome-wide association studies have started. Be-

cause of the high cost of whole-genome-wide association

studies and the great amount of effort needed to genotype

hundreds of thousands SNPs on each individual, the sam-

ple size of each individual study will often be limited. On

the other hand, if a genetic variant contributes only a mod-

est effect to a complex trait, a large sample size is required

in order to have enough power to detect the genetic effect

after correcting for the multiple tests. Collaborative studies

or multistage approaches have been advocated.31 Given
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the availability of family samples from traditional linkage

studies and the possibly better phenotypes defined in fam-

ily studies than in case-control studies, and the advantages

of collecting unrelated samples, we will have samples that

are either in family units or unrelated. In this circumstance,

it would be helpful to have access to a statistical method to

analyze both family and unrelated samples simultaneously

to increase the power, rather than to analyze them sepa-

rately. The methods we reviewed above apply to either

case-unrelated control designs or to family data. Recently,

Nagelkerke et al.32 developed a method of combining the

family and unrelated samples via a likelihood-based ap-

proach. Epstein et al.33 further extended this approach,

relaxing the assumption of Hardy-Weinberg equilibrium

(HWE) and random mating. The extended method also

allows for flexible modeling and estimation of allele effects

and is more powerful than methods for analyzing family

and unrelated samples separately when population stratifi-

cation does not play a role. However, the method requires

initial testing of whether the data sources can be combined.

If not, the test for association will be invalid and estimates

of genotype effects can be biased. In addition, the method

allows only parents-child triads and requires the rare-

disease assumption if unaffected siblings are also included.

Further, the information available in the family data is not

fully used because only the genotype data of the parents are

used. Thus, the application of this approach to pooled

family and unrelated data is limited.

In this report, we describe a simple approach that

can combine both family and unrelated samples without

assuming a rare disease, and allowing for the inclusion of

multiple affected or unaffected siblings. Our procedure

uses a principal component-based approach to eliminate

any effect of population stratification. Both parental phe-

notype and genotype data are used in the analysis. The

method does not require testing whether the family and

unrelated data can be combined, but does require enough

markers for GC. We evaluate the performance of our ap-

proach first by using simulated data in a variety of popula-

tion admixture models and then by using empirical data.
Material and Methods

We previously suggested using the principal components of

marker data to represent the genetic background of unrelated indi-

viduals.6,11,12 We now consider samples that include both family

and unrelated individuals. For simplicity, we consider only nuclear

families. We assume our data include Nf nuclear families. The ith

family has ki members, with the first two (j ¼ 1 or 2) being the

father and mother. In addition to these families, we have Nd unre-

lated cases and Nc unrelated controls. The total number of individ-

uals is thus NT ¼
PNf

i¼1 ki þNd þNc. To simplify, we assume there

are N families, i ¼ 1, 2, ., N, with ki ¼ 1 when i > Nf. Thus, we de-

fine each unrelated case or control as a separate family of size one.

In other words, we have N ¼ Nf þ Nd þ Nc. Let yij, which may be

either quantitative or binary, be the trait value of the jth individual

in the ith family. For a binary trait, yij takes on the value 0 or 1,
rican Journal of Human Genetics 82, 352–365, February 2008 353



indicating unaffected or affected, respectively. We do not consider

any covariates, although incorporating them is straightforward.

Let gij be the marker genotypic value of the jth individual in the

ith family, coded according to an additive, recessive, or dominant

mode of inheritance. M diallelic markers are genotyped. Let Xij ¼
(xij1, xij2, ., xijM)T be a column vector representing the marker ge-

notypic values for the jth individual in the ith family, where xijl is 0,

1, or 2, corresponding to a homozygote, heterozygote, and the

other homozygote, l ¼ 1, 2, ., M. We perform a principal compo-

nent analysis to summarize the marker data. Because our data

include both family and unrelated individuals, a naive principal

component analysis with all available data will result in biased

directions of maximum variability for the data. This is because

the directions of maximum variability will favor the correlated

data points in the marker space. Thus, the principal component

analysis is applied to only the unrelated individuals, i.e, the

parents in each family and the unrelated cases and controls. Let

S ¼
PNf

i¼1

P2
j¼1 ðXij � XÞ ðXij �XÞT þ

PN
i¼Nfþ1 ðXi1 �XÞðXi1 �XÞT

denote the variance-covariance matrix of the marker data for

these unrelated individuals in our data, where X is the overall

mean of X. Let e1 be the lth eigenvector corresponding to the lth

largest eigenvalue of S, l ¼ 1, 2, ., M. Thus the eigenvectors e1,

e2, ., eM represent new orthogonal axes corresponding to decreas-

ing variability of the marker data. We calculate the lth principal

component for individual j of family i by tijl ¼ ðXij �XÞTel, where

i¼1, 2, ., N, j¼1, 2, ., ki, and l¼1, 2, ., L. We do not incorporate

the disease status in the calculation of the principal components,

although such incorporation is not difficult. The disease status

might be important in the analysis because of sample ascertain-

ment; however, our simulation studies (see later) suggest that it

is not critical. Here we consider only the first L principal compo-

nents, assuming that the marker data can be well represented by

them. In this study, we use only the first 10 principal compo-

nents, which perform reasonably well in our simulation studies.

Because the principal components represent the genetic back-

ground information, we adjust both the trait and test marker values

for this background by applying linear regression, as suggested

by Price et al.15 However, we perform linear regression only on

the unrelated individuals. That is,

yij ¼ b0 þ b1tij1 þ.þ bLtijL þ 3ij

and

gij ¼ a0 þ a1tij1 þ.þ aLtijL þ tij,

where i¼ 1, 2, ., N, j¼ 1, 2 if i % Nf and otherwise j¼ 1 and 3ij and

tij are random errors. Let b̂0, b̂1, ., b̂L, â0, â1, ., âL be the least-

squares estimators of b0, b1, ., bL, a0, a1, ., aL, respectively. Be-

cause the principal components are orthogonal, b̂0, b̂1, ., b̂L,

â0, â1, ., âL can be easily calculated by

b̂l ¼
PNf

i¼1

P2
j¼1 yijtijl þ

PN
i¼Nf þ1 yi1ti1lPNf

i¼1

P2
j¼1 t2

ijl þ
PN

i¼Nf þ1 t2
i1l

and

âl ¼
PNf

i¼1

P2
j¼1 gijtijl þ

PN
i¼Nf þ1 gi1ti1lPNf

i¼1

P2
j¼1 t2

ijl þ
PN

i¼Nf þ1 t2
i1l

:

The residual for each individual, including the children, is calcu-

lated by

y�ij ¼ yij � b̂0 � b̂1tij1 �.� b̂LtijL
and
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g�ij ¼ gij � â0 � â1tij1 �.� âLtijL,

where i ¼ 1, 2, ., N, j ¼ 1, 2, ., ki.

We can view the residuals y�ij and g�ij as the projections of the

phenotypic and genotypic values in the space orthogonal to

the space spanned by the L principal components. Define

T ¼ 1
NT

PN
i¼1

Pki

j¼1 g�ijy
�
ij. Under the null hypothesis of no associa-

tion between the trait and test marker, y�ij and g�ij are independent

and we have EðTÞ ¼ 1
NT

PN
i¼1

Pki

j¼1 Eðg�ijÞEðy�ijÞ ¼ 0. We define the

test statistic

S2 ¼ T2

VarðTÞ , (1)

which follows a chi-square distribution with 1 degree of freedom

under the null hypothesis.

In the appendix we show that Var(T) can be calculated under the

null hypothesis by

VðTÞ ¼ 1

N2
T

"XNf

l¼1

Xkl

j¼1

Varðg�ljy�ljÞ

þ
XNf

l¼1

X
j1sj2

rj1 j2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðg�lj1 y�lj1 ÞVarðg�lj2 y�lj2 Þ

q

þ
XNdþNc

i¼1

Var
�
g�i
�
Var

�
y�i
�#

where rj1 j2 is the correlation of the random variable y�i g�i between

individuals j1 and j2 within a family. The variances and correla-

tions can be estimated from the data. In view of the different ascer-

tainments between families and unrelated cases and controls, we

suggest the variances be separately estimated in families and unre-

lated cases and controls. When all the individuals are unrelated,

(1) is the same as the test statistic proposed by Price et al.15 Note

that the variance of T, when calculated from the data as given

above, accounts for all residual correlations.
Simulations
Simulation 1. Discrete Model with Two Ancestral Populations

The first simulation aims to illustrate that the principal compo-

nent analysis is able to cluster a mixture population of two discrete

populations, by using selected ancestrally informative markers, to

eliminate the effect of population stratification and to retain

power when both family and unrelated data are analyzed together.

In order to have samples from two different populations, we sim-

ulated 140 nuclear families, 140 unrelated cases, and 100 unre-

lated controls sampled from an African population and 60 nuclear

families, 60 unrelated cases, and 100 unrelated controls sampled

from a European population. To do this, we accessed the panel

of SNPs that are informative for admixture mapping across the ge-

nome reported by Smith et al.34 The allele frequencies of the SNPs

and the marker map for both the African and European popula-

tions were downloaded from the website of the American Journal

of Human Genetics. We first generated 50,000 African nuclear fam-

ilies. The parental marker genotypes were generated according to

the African SNP allele frequencies assuming the SNPs are in link-

age equilibrium. We then simulated the offspring marker geno-

types according to the parental genotypes and the marker map.

The number of children produced by each marriage was assumed

to follow a Poisson distribution with mean size 2. We assumed that

an African individual has a 30% chance of being affected and this

probability was used to assign an individual’s disease status. We
2008



then sampled 140 families with at least one child affected. From

the children in the rest of the families, we randomly selected

140 unrelated cases and 100 unrelated controls, that is, only one

child was sampled per family. With the same method but Euro-

pean SNP allele frequencies, we generated 60 nuclear families,

60 unrelated cases, and 100 controls. We assumed that the disease

prevalence in the European population is 10%. We simulated

a two-allele candidate marker with susceptibility allele frequency

0.6 and 0.1 in the African and European populations, respectively.

Thus, confounding resulting from population stratification was

created when the samples came from the two populations with

different disease prevalence.

To simulate the samples under the alternative hypothesis, we

applied the same method but assigned an individual’s disease

status according to the penetrance of a test marker genotype under

different modes of inheritance: additive, multiplicative, recessive,

and dominant.

Simulation 2. Admixed Model with Two Ancestral Populations

This simulation aims to illustrate that principal component anal-

ysis is still able to eliminate the effect of population stratification

and to retain power when samples are drawn from an admixed

population such as the African-American population. In order to

simulate 200 nuclear families, 200 unrelated cases, and 200 unre-

lated controls from an admixed population, we used the general-

ized continuous gene-flow model described in Zhu et al.35 We

used the same marker panel as we did for the discrete model above.

In brief, at the first generation, the marker genotypes of 50,000 un-

related African persons were simulated according to the African

SNP allele frequencies. An admixed population was then formed

by taking a proportion l randomly selected from the African

population to marry with people generated according to European

marker allele frequencies, with the remaining proportion 1 � l

randomly mating among themselves. We let l vary at each

generation, generating it from a uniform distribution U(0, 0.06).

The number of children produced by each marriage was again

assumed to follow a Poisson distribution with mean size 2. We re-

peated this process 10 times to simulate the current families, result-

ing in a mixture of approximately 80%/20% of African and Euro-

pean ancestry in the current population. We also simulated

a two-allele candidate marker with susceptibility allele frequency

0.6 and 0.1 in the African and European ancestral populations,

respectively. We assigned an individual’s disease status with proba-

bility equal to his African ancestry. We then sampled 200 families

with at least one child affected. From the children in the rest of

the families, we randomly selected 200 unrelated cases and 200 un-

related controls, i.e., only one child per family was sampled. Thus,

confounding resulting from population stratification was created

for testing association between a marker and disease status.

To simulate the samples under the alternative hypothesis, we

applied the same method but assigned an individual’s disease

status according to the penetrance of a test marker genotype under

different modes of inheritance: additive, multiplicative, recessive,

and dominant.

Simulation 3. Discrete Model with Three Ancestral Populations

This simulation aims to illustrate the performance of principal

component analysis with randomly chosen markers when sam-

ples are from three discrete populations. We simulated samples

with three ancestral populations with the haplotype data released

by the HapMap project.36 The HapMap project consists of three

populations: 120 European chromosomes (CEU), 120 African

chromosomes (Yoruba), and 178 East Asian chromosomes (90

Han Chinese and 88 Japanese). In these simulations, we used
The Ame
only the haplotype data on chromosome 22. To generate the geno-

types of unrelated individuals in a large population, we first gener-

ated a number of crossovers across the chromosome by a Poisson

process, with an average of 6 crossovers per Morgan, in order

to create more independent chromosomes than in the original

HapMap data. The crossover locations were generated according

to a uniform distribution. Then, starting at one end of the chromo-

some, a random choice was made from the haplotypes of HapMap

chromosomes between two successive crossovers. The offspring

genotypes were generated by randomly transmitting one of the

two haplotypes of the father and the mother with the crossovers

occurring according to the genetic map. To simulate an individ-

ual’s disease status, we set the population disease prevalence to

be 25%, 15%, and 10% in African, European, and Asian popula-

tions, respectively. We then sampled 100, 60, and 40 nuclear

families with at least one affected offspring from the African, Euro-

pean, and Asian populations, respectively. We further selected 100

unrelated cases and 66 unrelated controls from the African popu-

lation, 60 cases and 67 controls from the European population,

and 40 cases and 67 controls from the East Asian populations.

Thus, our analysis sample included a total of 200 nuclear families,

200 unrelated cases, and 200 unrelated controls from the three

discrete populations, no marker being associated with the disease

status. 10,000 randomly selected SNPs on chromosome 22 were

used in the analyses for calculating the principal components.

The LD pattern across a chromosome is generally preserved for

the SNPs that are closely located.

The samples under the alternative hypothesis were simulated ac-

cording to the penetrance of a test marker genotype under different

modes of inheritance: additive, multiplicative, recessive, and dom-

inant. The test marker was chosen to be one of the 10,000 SNPs.

Simulation 4. Admixed Model with Three Ancestral Populations

This simulation aims to illustrate the performance of principal

component analysis when randomly chosen markers are used

for samples from a population admixed by three ancestral popula-

tions. Again, we simulated samples based on the chromosome

22 data of the HapMap project. We first generated haplotype

exchange points on the chromosome among the populations by

using a Poisson process, with an average of 6 crossovers per Mor-

gan. This is equivalent to a population that has been admixed

for an average of 6 generations. In each region between two ex-

change points, we determined which ancestral population a haplo-

type came from based on a distribution of admixture proportions

of Africans, Europeans, and East Asians, which we set to (0.7, 0.2,

0.1). We then applied the same method as for Simulation 3 to gen-

erate a person’s genotypes from the selected ancestral population.

The method in Simulation 3 for generating offspring genotypes

was also applied. To simulate an individual’s disease status, we as-

sumed that the probability of persons becoming affected is depen-

dent on their own admixture proportions. Letting a person’s Afri-

can, European, and East Asian admixture proportions be (lYRI,

lCEU, lEA), the probability of being affected for the person was

0.5lYRI þ 0.2lCEU þ 0.1lEA. We then generated 200 nuclear fami-

lies with at least one offspring affected, 200 unrelated cases, and

200 unrelated controls. 10,000 randomly selected SNPs on chro-

mosome 22 were used in the analyses. Again, the LD pattern across

a chromosome is in this way preserved when two SNPs are closely

located.

As before, the samples under the alternative hypothesis were

simulated according to the penetrance of a test marker genotype,

chosen from the 10,000 SNPs, under different modes of inheri-

tance: additive, multiplicative, recessive, and dominant.
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Results

The Performance of Principal Component Analysis

Figure 1 presents the principal component analysis for the

samples generated according to Simulation 1. Only the

first two principal components were plotted for 200, 400,

and 800 SNPs. People from African and European popula-

tions can apparently be correctly grouped. The children’s

genotypes were not used to obtain the principal compo-

nents although their principal component values were

obtained through the eigenvectors obtained from the ge-

notypes of their parents and the unrelated cases and con-

trols. We observed that the children can also be correctly

grouped. Even the first principal component alone can

cluster individuals into correct groups when samples are

from a population consisting of two discrete subpopula-

tions, consistent with the results in Zhu et al.12 We then

standardized the principal components over the whole
Figure 1. Plot of the First Two Principal
Components When Samples Were Gener-
ated in Simulation 1, Where Samples
Were Drawn from Two Discrete Popula-
tions
200, 400, and 800 informative SNPs ob-
tained from Smith et al.34 were generated
with no LD between SNPs in two subpopu-
lations. Left and right dots represent indi-
viduals from African and European popula-
tions, respectively. The children’s principal
components were calculated by projection
to the axes obtained from the independent
samples. It can be observed that the first
principal component can distinguish indi-
viduals from two subpopulations for both
independent samples and children.

sample and estimated their standard

deviations for Africans and Europeans

separately. The standard deviation of

the first principal component within

populations is substantially smaller

than that of the second principal com-

ponent (Figure 1). The within-popula-

tion standard deviation is reduced as

the number of SNPs increases for the

first principal component, but not

for the second one. ANOVA suggests

that 99.5% to 99.9% of the total vari-

ance can be expressed by the clusters

using the first principal component

alone for 200 to 800 SNPs, but almost

no variation was expressed for the sec-

ond principal component. The results

also hold for the children, although

we did not use their genotype infor-

mation for calculating the eigenvec-
356 The American Journal of Human Genetics 82, 352–365, February
tors. The results indicate that the principal components

can well capture the variation of an individual’s ancestry

and that a child’s ancestry can also be estimated through

the prediction of the principal components obtained from

the unrelated individuals’ principal components. The re-

sults for the next eight principal components were similar

to those for the second principal component.

Simulation 1 generated samples comprising only a dis-

crete mixture of subpopulations. For the samples from an

admixed population generated by Simulation 2, we did

not observe a clear picture when we plotted the first two

principal components (Figure 2). This is because the popu-

lation has been substantially mixed after 10 generations

and each person carries a portion of African and European

ancestries. We then plotted each person’s true ancestry

against the first two principal components (Figure 3). The

true ancestry is calculated here as the proportion of alleles

from the ancestral African population, standardized by the
2008



sample mean and standard deviation. We observed that

the first principal component is highly correlated with

the true ancestry defined this way, with the correlation

coefficients ranging from 0.97 to 0.99 for 200 SNPs to

800 SNPs. In comparison, the correlation between the

second principal component and the true ancestry is less

than 0.14. The results suggest that the principal compo-

nents are able to capture the ancestry variation even for

data generated through a generalized continuous gene

flow model, such as an African-American population.

The results also hold for the children, although we did

not use their genotype information for calculating the

eigenvectors.

Figure 4 presents the principal component analysis for

the samples generated according to Simulation 3, where

we have a mixture of three populations and 10,000 ran-

dom SNPs were simulated. The unrelated individuals, as

well as the children, from the three populations can appar-

ently be correctly grouped when using a large number of
Figure 2. Plot of the First Two Principal
Components When Samples Were Gener-
ated in Simulation 2, Where Samples
Were Drawn from an Admixed Population
of Two Ancestral Populations
200, 400, and 800 informative SNPs ob-
tained from Smith et al.34 were generated
with no LD between SNPs in two ancestral
populations. Blue and red colors indicate
that an individual has more African and Eu-
ropean ancestral alleles, respectively. The
children’s principal components were cal-
culated by projection to the axes obtained
from the independent samples. Because
each individual carries a portion of SNPs
from each ancestral population, we cannot
observe clean clusters as in Figure 1.

random SNPs, rather than SNPs de-

signed for admixture mapping. The

first two principal components are

sufficient to cluster individuals into

correct groups when the samples

come from a population consisting

of three discrete populations. We

then standardized the principal com-

ponents over the whole sample and

estimated the standard deviations

for Africans, Europeans, and Asians

separately. The standard deviations

of the first two principal components

within populations is substantially

smaller than those of the third princi-

pal components (Figure 4). We then

performed linear regression analysis,

regressing each of the true popula-

tion-specific ancestries on the first
The Ame
three principal components. The R-square values were

0.986, 0.987, and 0.995 for European, Asian, and African

ancestries, respectively, suggesting that the principal com-

ponents can capture the individual ancestry variation. The

results for children were similar even though we did not

use their genotype information for calculating the eigen-

vectors.

When the samples came from the admixed population

with three ancestral populations generated in Simulation

4, we did not observe a clear picture on plotting the first

three principal components (Figure 5), because each per-

son carried a portion of African, European, and Asian an-

cestry. When compared with the true ancestries, however,

a substantial correlation can be observed. We performed

linear regression analysis by regressing the true ancestries

on the first three principal components and obtained the

R-square values of 0.239, 0.596, and 0.951 for European,

Asian, and African ancestries, respectively, indicating that

the first three principal components are not enough to
rican Journal of Human Genetics 82, 352–365, February 2008 357



capture all the ancestry variation. When using the first

10 principal components in the regression model, the

R-square values increased to 0.808, 0.902, and 0.962 for

European, Asian, and African ancestries, respectively. We

noticed that some of the top principal components may

express less variation of the true ancestry than lower

ones, as demonstrated by the cumulative R-square values

(Table 1). The results for children were similar, though

we did not use their genotype information for calculating

the eigenvectors.

Type I Error for Association Analysis

The main purpose of this report is to focus on developing

a statistical method for combining family and unrelated

samples. We thus examined the type I error of the pro-

posed statistic S2 that can combine both family and unre-

lated samples with data generated from the four simula-
Figure 3. Plot of the First Two Principal
Components against the True Ancestry
for the Same Data as in Figure 2
We observe that the first principal compo-
nent, but not the second, is highly corre-
lated with the true ancestry.

tion scenarios. To illustrate how

much power can be gained by using

both parents’ genotype and pheno-

type information, we also compared

the proposed method with the trans-

mission/disequilibrium test (TDT)

with the parent-affected-child trio

data only.19 We further compared S2

with Fisher’s meta-analysis method37

of combining the p values of the fam-

ily and unrelated case-control tests,

resulting in a statistic that follows

a chi-square distribution with 4 de-

grees of freedom. When only parent-

affected-child trios are available, we

also created an unaffected pseudo-

child having the two alleles not trans-

mitted from the parents to the af-

fected child at each marker locus.

We then analyzed the data with the

proposed method and compared the

type I error and power when using

parent-affected-child data only. Table

2 presents the type I error for these

test statistics when data were gener-

ated from the four simulation scenar-

ios. The proposed test S2 has reason-

able type I error for all the scenarios:

with parent-affected-child trios only

(S2), adding to each family an unaf-

fected pseudo-child whose alleles are
358 The American Journal of Human Genetics 82, 352–365, February
not transmitted when combining family and unrelated

samples (S2*), and separate analyses of family and unre-

lated samples. The TDT statistic also has reasonable type I

error, as well as Fisher’s method of combining p values

with the p values obtained by the proposed method for

family and unrelated data separately. We noticed that

Fisher’s method leads to significant inflation of the type I

error rate for the Simulation 2 data with 800 markers in

the principal component analysis. A possible reason for

this may be that the number of markers in the principal

component analysis is still not adequate.

Power Analysis

We also performed power analyses for the data generated

from the four simulation scenarios. Table 3 presents the

power of the test statistics when data were generated by

Simulation 1 under multiplicative, additive, recessive, and
2008



dominant modes of inheritance. We used 200 SNPs to

control for the effect of population stratification for

Simulations 1 and 2. The proposed test gains substantial

power when compared with separate analyses and better

power than analyses combined by Fisher’s method. The power

of using the unaffected pseudo-children is slightly better

than without using them. Interestingly, the proposed

method improves the power substantially over the TDT

method, indicating that parental phenotype information

does contribute information in association analysis. The

results for the data generated in Simulation 2 are similar

(Table 4).

We next compared the power for the samples generated

by Simulations 3 and 4, which consist of admixtures of
The Ame
three populations. The results are also similar to those of

data generated from Simulations 1 and 2 (Tables 5 and 6).

Application to Angiotensin I-Converting

Enzyme Data

The rennin-angiotensin system (RAS) plays a key role in

blood-pressure regulation. The angiotensin I-converting

enzyme (ACE [MIM 106180]) is a key component of the

RAS because it catalyzes the conversion of angiotensin

I to angiotensin II, a potent vasoconstrictor that leads to

the constriction of blood vessels and retention of salt and

water. The ACE gene polymorphism has been extensively

studied,38–40 although a causative relationship between

the ACE gene and hypertension is still not established.
Figure 4. The First Three Principal Com-
ponents for Data from Simulation 3
Plot of the first three principal components
when samples were generated in Simula-
tion 3, where samples were drawn from
three discrete populations simulated with
the data on chromosome 22 of YRI, CEU,
and Japanese and Chinese (JCH) from the
HapMap project. 10,000 randomly selected
SNPs were generated and the LD between
SNPs was preserved as in the HapMap
data. The children’s principal components
were calculated by projection on to the

axes obtained from the independent samples. Red, green, and blue represent individuals who were from CEU, JCH, and YRI, respectively.
It can be observed that the first two principal components can distinguish individuals from three subpopulations for both independent
samples and children.
(A) Independent samples.
(B) Children samples.
Figure 5. The First Three Principal Com-
ponents for Data from Simulation 4
Plot of the first three principal components
when samples were generated in Simula-
tion 4, where samples were drawn from an
admixed population simulated with the
data on chromosome 22 of YRI, CEU, and
Japanese and Chinese (JCH) from the Hap-
Map project. The individual true ancestry is
also presented. 10,000 randomly selected
SNPs were generated and the LD between
SNPs was preserved as in HapMap data.
The children’s principal components were
calculated by projection on to the axes
obtained from the independent samples.
Because each individual carries a portion
of SNPs from each ancestral population,
we can not observe distinct clusters as in
Figure 4. Color designates an individual’s
ancestral proportion, as seen in the right
panel.
(A) Three principal components of inde-
pendent individuals.
(B) True independent individual ancestry.
(C) Three principal components of chil-
dren.
(D) True ancestry of children.
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Bouzekri et al.41 described the association between 13 var-

iants in the ACE gene at an average distance of 2 kb apart

and the ACE plasma level in three population samples,

from Nigeria, Jamaica, and an African-American commu-

nity in the US. Several polymorphisms have been shown

to be significantly associated with plasma ACE level, with

ACE8 being the most significant one. A portion of the

Nigerian and US samples have also been genotyped with

microsatellite markers by the Mammalian Genotyping

Service in Marshfield, WI.42,43 To illustrate the application

of our method, we tested whether the association evidence

of these 13 SNPs can be improved on combining the Niger-

ian and US samples, by comparing with FBAT,21 which

applies only to family data.
360 The American Journal of Human Genetics 82, 352–365, February
The data consist of 312 Nigerian and 312 US families, re-

spectively. We were able to identify 428 individuals from

119 Nigerian nuclear families, 66 unrelated Nigerians, and

32 unrelated US individuals, who have available 13 poly-

morphisms in the ACE gene and 269 overlapping microsa-

tellite markers across the genome. The missing genotyping

rate of each individual is less than 15%. We recoded a Niger-

ian as affected if his/her ACE level is greater than 715 and

unaffected otherwise. Similarly, a US individual is consid-

ered as affected if his/her ACE level is greater than 634

and unaffected otherwise. These thresholds are calculated

by adding one standard deviation to the population mean

in the corresponding populations.21 For simplicity, we di-

chotomized the 269 microsatellite markers based on the
Table 1. T Test Statistic Values and Cumulative R2 in Regression Analysis of True Ancestry on Each of the First 10 Principal
Components for the Data Generated in Simulation 4

Unrelated Children

CEU JCH YRI CEU JCH YRI

T R2 T R2 T R2 T R2 T R2 T R2

PRIN1 20.6 0.10 69.2 0.59 �136.1 0.89 15.4 0.12 55.7 0.57 �107.7 0.87

PRIN2 0.7 0.10 4.3 0.59 �7.4 0.89 1.8 0.13 3.9 0.57 �8.9 0.88

PRIN3 �23.7 0.24 3.9 0.60 35.8 0.95 �20.8 0.29 3.4 0.57 31.4 0.95

PRIN4 �45.7 0.75 47.4 0.87 11.1 0.96 �36.9 0.75 37.3 0.85 10.3 0.95

PRIN5 2.2 0.75 �3.0 0.87 0.55 0.96 1.3 0.75 �2.7 0.85 1.7 0.95

PRIN6 �2.4 0.75 4.5 0.88 �2.4 0.96 �1.6 0.75 2.9 0.86 �2.2 0.95

PRIN7 �5.4 0.76 5.6 0.88 1.4 0.96 �6.1 0.76 5.6 0.86 2.7 0.95

PRIN8 7.2 0.77 �2.6 0.88 �8.9 0.96 5.5 0.77 �2.8 0.86 �5.6 0.96

PRIN9 8.0 0.78 �6.2 0.89 �5.0 0.96 5.3 0.78 �4.0 0.87 �3.5 0.96

PRIN10 �10.1 0.81 11.3 0.90 1.2 0.96 �8.0 0.80 8.8 0.88 1.2 0.96
Table 2. Type I Error in Percent of the Test Statistics at the Nominal 5% and 1% Significance Levels When the Samples Were
from Simulations 1 to 4

No. of Markers S2 S2* TDT S2
CC S2

Fam S2�

Fam Fisher’s c2 S2 S2* TDT S2
CC S2

Fam S2�

Fam Fisher’s c2

5% 1%

Discrete, Simulation 1a

200 5.3 5.80 5.65 5.4 5.65 5.60 5.25 1.5 1.45 1.2 0.85 0.95 1.0 1.2

400 5.6 5.35 5.8 5.55 5.3 5.30 5.3 0.85 1.20 1.15 1.3 0.95 0.95 1.3

800 5.46 5.83 5.29 5.21 5.21 5.13 5.5 1.08 1.17 0.79 1.04 1.21 0.92 1.13

Admixed, Simulation 2a

200 5.65 4.90 5.35 6.0 5.45 4.25 5.65 1.05 0.75 0.95 1.2 1.05 1.1 1.0

400 6.9 5.65 4.6 6.05 5.85 5.85 6.15 1.15 1.60 0.95 1.25 1.55 0.95 1.05

800 5.67 4.83 6.08 5.63 5.88 5.46 7.77 1.17 1.25 1.12 1.54 1.58 1.13 1.63

Discrete, Simulation 3b

10,000 5.47 5.13 4.94 6.61 4.52 4.61 5.73 1.25 0.99 1.02 1.28 0.85 0.77 1.28

Admixed, Simulation 4b

10,000 4.34 4.34 5.33 4.35 5.24 5.28 4.73 0.84 0.81 0.95 0.75 1.04 0.90 0.80

200 parent-affected-child trios, 200 cases, and 200 controls. Abbreviations: S2, the proposed method is applied to both family and unrelated data; S2*, the

proposed method is applied to both family and unrelated data, each family being augmented by an unaffected pseudo-child whose alleles were not trans-

mitted; S2
CC, the proposed method is applied to case-control data only; S2

Fam, the proposed method is applied to family data only; S2�

Fam, the proposed

method is applied to family data only, but each family being augmented by an unaffected pseudo-child whose alleles were not transmitted.
a Type I error is calculated based on 1000 replications. Fisher’s c2 was calculated based on the S2 statistics for unrelated and families, respectively.
b Type I error is calculated as the percentage of 10,000 SNPs reaching the nominal significance level.
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mean of the marker values, i.e, we recorded a microsatellite

marker allele as 1 if it is less than its average and 2 otherwise.

Any missing marker value was imputed by using the marker

mean. We performed the principal component analysis

with all the parents from each of the families and the unre-

lated Nigerian and Maywood individuals, for a total 324

persons. Our analysis based on these samples, including

both the family and unrelated individuals, clearly demon-

strated that the proposed method has increased power

over that of FBAT with only the Nigerian family data (Table

7). We also observed that 7.4% of the microsatellite markers

Table 4. Power for Test Statistics at the Nominal
Significance Levels 5% and 1% When Samples
Are from Simulation 2

Significance Level S2 S2* TDT S2
CC S2

Fam S2�

Fam Fisher’s c2

Multiplicative: rDD ¼ 0.225, rDd ¼ 0.15, rdd ¼ 0.1

5% 99.0 99.2 78.4 78.6 91.4 91.4 98.2

1% 95.9 96.4 56.1 55.2 76.5 78.6 92.7

Additive: rDD ¼ 0.2, rDd ¼ 0.15, rdd ¼ 0.1

5% 97.4 97.6 67.6 68.9 84.7 85.6 95.3

1% 90.7 92.4 44.6 45.4 65.4 67.0 85.3

Recessive: rDD ¼ 0.2, rDd ¼ 0.1, rdd ¼ 0.1

5% 70.3 70.0 38.0 36.5 49.0 50.7 61.8

1% 47.1 49.3 18.6 16.2 24.4 26.1 37.8

Dominant: rDD ¼ 0.2, rDd ¼ 0.2, rdd ¼ 0.1

5% 100 100 86.4 89.4 97.1 97.6 99.7

1% 99.4 99.5 64.2 71.4 90.1 90.7 98.3

For details and abbreviations, see legend to Table 3.
The Ame
reach the 5% significance level. Although this rate is rela-

tively high, which could be due to some association or

incomplete control of population stratification, because of

the relatively small number of microsatellites, this value is

within the 95% confidence interval for a true 5% value.
Discussion

We present a new method to combine family and unre-

lated samples, while avoiding the effects of population

stratification. Unlike the method developed by Nagelkerke

Table 5. Power for Test Statistics at Significance Levels 5%
and 1% When Samples Are from Simulation 3

Significance Level S2 S2* TDT S2
CC S2

Fam S2�

Fam Fisher’s c2

Multiplicative: rDD ¼ 0.225, rDd ¼ 0.15, rdd ¼ 0.1

5% 99.5 99.4 79.0 88.8 94.1 99.8 99.3

1% 98.2 98.3 55.8 71.3 85.2 85.4 97.1

Additive: rDD ¼ 0.2, rDd ¼ 0.15, rdd ¼ 0.1

5% 98.5 98.8 66.3 75.6 84.8 85.6 75.7

1% 91.9 92.2 39.6 51.6 67.6 68.1 87.1

Recessive: rDD ¼ 0.2, rDd ¼ 0.1, rdd ¼ 0.1

5% 98.5 98.2 71.6 78.1 86.8 88.0 96.4

1% 92.6 93.0 49.1 55.8 68.6 69.9 87.7

Dominant: rDD ¼ 0.2, rDd ¼ 0.2, rdd ¼ 0.1

5% 96.8 96.9 58.0 73.8 82.1 84.5 94.7

1% 89.6 91.0 32.1 49.2 61.5 66.0 83.5

For details and abbreviations, see legend to Table 3.
Table 3. Power for Test Statistics at the Nominal Significance Levels 5% and 1% When Samples Are from Simulation 1

Significance Level S2 S2* TDT S2
CC S2

Fam S2�

Fam Fisher’s c2

Multiplicative: rDD ¼ 0.225, rDd ¼ 0.15, rdd ¼ 0.1

5% 96.8 96.8 72.4 65.5 84.8 86.2 94.8

1% 87.4 88.8 51.4 40.4 65.4 68.3 83.0

Additive: rDD ¼ 0.2, rDd ¼ 0.15, rdd ¼ 0.1

5% 91.7 92.6 63.7 57.5 79.4 80.3 89.0

1% 80.6 81.5 39.0 34.4 53.4 55.1 75.5

Recessive: rDD ¼ 0.2, rDd ¼ 0.1, rdd ¼ 0.1

5% 47.8 50.2 31.9 23.4 35.9 36.8 43.0

1% 27.2 28.2 13.8 9.1 17.4 18.7 22.1

Dominant: rDD ¼ 0.2, rDd ¼ 0.2, rdd ¼ 0.1

5% 99.0 99.1 84.9 83.3 93.9 94.8 98.6

1% 96.3 96.8 65.5 62.7 81.4 83.2 94.7

Power was calculated based on 1000 replications. 200 parent-affected-child trios, 200 cases, and 200 controls. 200 SNPs were used. Disease allele frequency

is 0.3 and 0.2 in Africans and Europeans, respectively. 200 SNPs were simulated to correct for population stratification. Abbreviations: S2, the proposed

method is applied to both family and unrelated data; S2*, the proposed method is applied to both family and unrelated data, each family being augmented

by an unaffected pseudo-child whose alleles are not transmitted; S2
CC, the proposed method is applied to case-control data only; S2

Fam, the proposed

method is applied to family data only; S2�

Fam, the proposed method is applied to family data only, but each family being augmented by an unaffected

pseudo-child whose alleles were not transmitted.
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et al.32 and extended by Epstein et al.,33 the proposed

method does not require us to test whether the data from

different studies can be combined. In fact, the proposed

method is able to integrate the data from either different

or admixed populations and is therefore more general

than the methods of Nagelkerke et al.32 and Epstein

et al.33 Simulation studies suggest that the proposed new

method is robust to population stratification and more

powerful than the usual way of analyzing family and unre-

lated samples separately, and of then using Fisher’s method

of combining p values from the separate data sets. In addi-

tion, the proposed method uses both parental phenotype

and genotype information and allows for multiple siblings.

Compared to the TDT method, the proposed method im-

proves power substantially, although the TDT does not

require additional markers to be genotyped. Thus, we sug-

gest that the proposed method should be used for a family

study when data on many markers are available across the

genome. When only parent-affected-child trios are avail-

able, our simulation studies suggest that using unaffected

pseudo-children may slightly improve the power. How-

ever, further studies should be conducted in order to

understand how much power can be gained for different

population admixture models. The gain in power is mainly

due to the effectively increased sample size available when

the analysis of the family data is not conditional on paren-

tal information, and due to being a one degree of freedom

test when compared to Fisher’s method, which is a four de-

grees of freedom test. The methods of Nagelkerke et al.32

and Epstein et al.33 are sensitive to population stratifica-

tion and require the assumption that the controls are

from the same population as that of the parents. Because

our method focuses on integrated samples from family

and unrelated data, while correcting for population strati-

fication, we did not directly compare it with the methods

of Nagelkerke et al. and Epstein et al., who focus on testing

Table 6. Power for Test Statistics at Significance Levels
5% and 1% When Samples Are from Simulation 4

Significance Level S2 S2* TDT S2
CC S2

Fam S2�

Fam Fisher’s c2

Multiplicative: rDD ¼ 0.225, rDd ¼ 0.15, rdd ¼ 0.1

5% 99.9 99.8 80.7 91.3 94.8 96.0 99.6

1% 99.2 99.0 58.4 77.5 85.9 87.1 98.7

Additive: rDD ¼ 0.2, rDd ¼ 0.15, rdd ¼ 0.1

5% 98.7 98.9 66.5 79.7 85.1 86.3 97.8

1% 95.6 95.5 42.8 57.5 69.2 69.9 90.3

Recessive: rDD ¼ 0.2, rDd ¼ 0.1, rdd ¼ 0.1

5% 99.8 99.8 77.7 87.1 92.3 93.3 99.4

1% 98.5 98.3 55.3 67.1 78.6 78.8 96.8

Dominant: rDD ¼ 0.2, rDd ¼ 0.2, rdd ¼ 0.1

5% 96.6 97.1 57.6 73.3 82.2 83.9 94.6

1% 90.9 92.6 33.0 51.4 62.0 63.9 83.8

For details and abbreviations, see legend to Table 3.
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whether the samples can be combined. Our simulated sam-

ples are not valid for the methods proposed by Nagelkerke

et al. and Epstein et al. When the samples of family or un-

related persons are from the same population, our method

should be expected to have more power than those of Na-

gelkerke et al. and Epstein et al., which use the conditional

likelihood approach of the TDT and are less powerful than

an association method that uses all the phenotype and

genotype information in family data.30

The application of our method to the ACE data also dem-

onstrates that combining family and unrelated data has an

advantage over the method of using family data only.

However, the type I error based on the 269 microsatellite

markers is slightly high, although it is within the 95%

confidence interval for a true 5% value. In general, a large

number of markers are necessary to well control the effect

of population stratification.

Our method can be easily applied to the association anal-

ysis of quantitative traits. However, a more powerful way

may be based on using a multivariate regression framework

in which a quantitative trait is assumed to be multivariate

normally distributed. Although our method can be theoret-

ically extended in an obvious manner to the analysis of

large pedigrees, there are then many more familial correla-

tions to be estimated and those based on pair types that are

infrequent in the data set will not be accurately estimated.

One possibility is to assume that all the familial correlations

are simple functions of a single parameter, such as heritabil-

ity.44 This idea was later extended to include the estimation

of three more parameters (variance components that allow

for extra sibling, marital, and/or nuclear family correla-

tions),45 and this is implemented in ASSOC, part of the

program package S.A.G.E. If the necessary markers are avail-

able, our method of using principal components to sum-

marize the genetic data for inferring population structure

Table 7. The Association of the ACE Polymorphisms and the
ACE Plasma Level Analyzed by Proposed Method and FBAT

S2 FBAT

Marker p Value p Value

ACE1 0.153 0.734

ACE2 0.102 0.804

ACE3 0.127 0.796

ACE4 0.036 0.121

ACE5 0.224 -

ACEs12 0.779 0.438

ACEs11 0.012 0.675

ACE6 0.950 0.317

NewACE6 0.594 -

ACE7 0.404 0.416

I/D 0.573 0.962

ACE8 1.06 3 10�5 0.017

ACE9 0.178 0.431

FBAT did not calculate the p value because of rare allele frequency. S2 is cal-

culated based on both family and unrelated individuals, for a total of 526

individuals. FBAT is calculated based on the family data only, with a sample

size of 428 individuals.
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from unrelated samples to family samples provides a way of

making the association analysis implemented in ASSOC ro-

bust to stratification with more power than is afforded by

the use of a transmitted allele indicator,26 which yields

a TDT type of analysis. The use of the principal components

calculated from marker genotype data has already been

established for unrelated samples.6,11,12 The principal com-

ponent analysis assumes that the samples are independent

and calculating principal components will result in bias if

applied naively to data with lager family sizes. Thus, we

propose to calculate the principal components for the chil-

dren through the eigenvectors calculated from the indepen-

dent samples in the available data. We made the assumption

that the axes of the principal components can be well rep-

resented by just the independent samples in the data. This

is a reasonable assumption when the parental genotype

data are available, because the children carry half of both

parental genomes. When parental DNA is not available,

we can randomly choose one of the siblings for the princi-

pal component analysis. This should not be a major imped-

iment, provided that the average proportion from each

ancestral population in the sample is not too small,46 so

that the SNPs from each ancestral population are well rep-

resented.

When a study involves hundreds of thousands of

markers, such as in a whole-genome association study,

calculating the principal components is computationally

intensive but less intensive than the MCMC approach.9

Because the principal components can be calculated

through the singular value decomposition of the matrix

of marker data, and the computation time is dependent

on the singular value decomposition, Price et al.15 sug-

gested that this calculation is rather fast. In fact, we found

that calculating the principal components for 800 individ-

uals and 10,000 SNPs took 3.5 min on the Intel Xeon

1.6 Ghz cluster. When the number of SNPs is extremely

large, such as is the case when more than a million SNPs

are available, an alternative approach for calculating prin-

cipal components is a two-stage approach. First, we divide

the markers into nonoverlapping subsets/chromosomes

and calculate the principal components on every subset/

chromosome. Then, the first L principal components on

each subset/chromosome are used to calculate new princi-

pal components and these principal components are used

to control the effect of population stratification. We com-

pared this two-stage approach to directly calculating the

principal components and found that very little informa-

tion is lost. For example, we divided the 10,000 SNPs

into 20 subsets each of 500 SNPs for the data generated

in Simulations 3 and 4 and then calculated the principal

components by the two-stage approach. First, we calcu-

lated the top 10 principal components in each of the 20

subsets, and we then calculated the top 10 principal com-

ponents from the top 10 principal components from each

of the 20 subsets. We found that the variation of true an-

cestry can be captured just as well by the first 10 principal

components calculated this way as when calculated in one
The Ame
step (data not shown). The multistage approach can be fast

and requires less computer memory in dealing with large

data sets. Recently, Bauchet et al.14 suggested using princi-

pal coordinate analysis in which the principal components

are calculated on people. However, with this method it is

not feasible to infer the children’s principal components.

In our analysis, we used the first 10 principal compo-

nents for controlling the population stratification. This

number was also suggested by Price et al.15 When hun-

dreds of thousands of SNPs are available, even subtle

population admixture can be detected by principal compo-

nent analysis. However, using only the first 10 principal

components may not be sufficient when a population is

admixed with several ancestral populations. Thus, the

method developed by Patterson et al.46 might be useful

to find out how many principal components are necessary.

It should be noted that our regression of both the trait

and test marker on the principal components is based on

unrelated subjects only, while the test statistic is calculated

on both related and unrelated subjects. This may bring

additional variability into the denominator of the test sta-

tistic T, resulting in either E(g*) or E(y*) not being 0 under

the null hypothesis of no association. However, our simu-

lation studies suggested that both E(g*) and E(y*)¼ 0 under

the null hypothesis of no association. We argue that the

effect resulting from the population structure for the fam-

ily members can be well predicted when a large number of

markers across the genome are available. Therefore, E(g*)

and E(y*) will still be close to 0, even if they are estimated

based on both unrelated and related individuals. In

the case of large pedigrees, we believe that, as long as the

founders’ genotype and phenotype values are available,

our method should work well. However, in the case that

many founders’ genotype and phenotype information is

missing, which is the case for many family studies, our

method may result in too few individuals from which

to obtain good estimates. In this case, the specific parts of the

large pedigrees should be chosen for the purpose of

estimating the regression coefficients. However, details of

how to accomplish this will require further research. An

alternative approach could be the mixed-model method

developed by Yu et al.47 However, this method requires

that population assignments be obtained from other

methods, such as STRUCTURE.48

It should also be noted that pedigrees collected for link-

age analyses may be selected differently from the subjects

collected for a case-control study. For example, if the ped-

igree data are collected based on prevalent cases whereas

the case-control study is based on incident cases, this could

lead to survival bias. Clearly, this is an issue that should be

considered in designing an appropriate case-control study

when following up on a linkage study.

In summary, we developed a simple method to integrate

the data from family-based studies and unrelated samples

while correcting for population stratification. This method

can be applied to both qualitative and quantitative traits

and is more powerful than a method that analyzes family
rican Journal of Human Genetics 82, 352–365, February 2008 363



and unrelated samples separately, the former by a condi-

tional approach and the latter by GC. This method should

be useful for current association studies when different

groups use different study designs. The program FamCC,

to combine family and unrelated samples, will be available

online and incorporated into the S.A.G.E. program package.
Appendix A

Under the null hypothesis, genotype value g�i and pheno-

type value y�i are independent.
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where rj1j2 is the correlation of the random variable y�i g�i
between individuals j1 and j2 within a family. The variances

and correlations can be estimated from the data. Because of

the different ascertainments between families and unrelated

casesandcontrols, we suggest that the variancesbe estimated

in families and unrelated cases and controls separately.
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